Scientific paper

Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: A Conductometric Study of Salicylate, Naproxen, Diclofenac and Ibuprofen Dilute Aqueous Solutions

Marija Bešter-Rogač

Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia

* Corresponding author: E-mail: marija.bester @fkkt.uni-lj.si Phone: +386 1 2419 410; fax: +386 1 2419 425

Received: 12-10-2008

Dedicated to Professor Josef Barthel on the occasion of his 80th birthday

Abstract

The electric conductivities of aqueous solutions of nonsteroidal anti-inflammatory drugs salicylate, naproxen, ibuprofen sodium and diclofenac sodium salts and diclofenac potassium salt were measured in the temperature range from 278.15 K to 313.15 K (in steps of 5 K) and in the concentration range $3 \times 10^{-4} < c(\text{mol/dm}^{-3}) < 0.007$. Data analysis based on the low concentration chemical model of electrolyte solutions yielded the limiting molar conductivity, $\Lambda^{\circ\circ}$, and the association constant, K_A . Using the known data of the limiting conductivities of sodium and potassium ions the limiting conductivities of the salicylate, naproxen, diclofenac and ibuprofen anions were evaluated, and the radii of anions in water were estimated. Total dissociation of the investigated salts in water is evident and the considerable differences in the anion mobilities are observed. They are discussed in terms of possible hydration and hydrophobic interactions.

Keywords: Electrolyte conductivity, electrolyte solution, sodium salicylate, naproxen sodium salt, diclofenac sodium salt, diclofenac potassium salt, ibuprofen sodium salt, chemical model

1. Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed categories of drugs worldwide in the treatment of pain, inflammation and some of them even fever in many conditions. Their mechanism for action likely relates to the inhibition of prostaglandin synthesis¹ Although they are now used widely in therapeutics, physicochemical information about them are rather scarce.

However, the effects of a drug in a biological system is the ultimate consequence of physicochemical interactions between a drug and functionally important molecules in the living organism. The dominant fluid media in the biological systems through which the drugs are transported and in which they interact are water and lipids. The drugs usually undergo a number of complicated interactions in solution which may cause not only structural changes of biological fluids but also metabolic and structural changes of drugs. Therefore drug-drug and drug-solvent interactions may be of great importance to understand their physiological action.

The temperature and concentration dependence of the electrolyte conductance has been proved as one of the most appropriate methods for studying ion-ion, ion-solvent and solvent-solvent interactions in solutions.²

Recently a conductivity study of some drugs in acetonitrile at 298.15 K has been carried out³ but there is no literature data on the drug ion mobility in water so far. In the present work electrical conductivity measurements of aqueous solutions of some NSAIDs: sodium salicylate (Na-Sal), naproxen sodium salt (NaNap), diclofenac sodium salt (NaDic), diclofenac potassium salt (KDic), and ibuprofen sodium salt (NaIbu) at the temperatures from 278.15 K to 313.15 K (in steps of 5 K) in the concentration range $3 \times 10^{-4} < c \text{ (mol/dm}^{-3}) < 0.007$ were carried out. Data analysis is done in the framework of the low concentration chemical model (lcCM)⁴ giving the information on the ion association and mobility of ions in aqueous solutions.

Bešter-Rogač: Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: ...

Figure 1. The structures of investigated drugs: a) salicylate, b) naproxen, c) diclofenac and d) ibuprofen sodium salt.

2. Experimetal

2.1. Materials

Sodium salicylate (2-Hydroxybenzoic acid sodium salt, HOC₆H₄COONa, puriss. p.a., ≥99.5%, Fluka, Germany), naproxen sodium ((S)-6-Methoxy-α-methyl-2naphthaleneacetic acid sodium salt, C₁₄H₁₃NaO₃, ≥98%, Sigma-Aldrich, Germany), diclofenac sodium (2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid sodium salt, $C_{14}H_{10}Cl_2NNaO_2$, > 99.7%, Titan Pharma, India) diclofenac potassium salt (2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid potassium salt, $C_{14}H_{10}Cl_2NKO_2$, > 99.7%, Titan Pharma, India), and ibuprofen sodium salt (α -Methyl-4-(isobutyl)phenylacetic acid, C₁₃H₁₇O₂Na, Sigma, Germany) were stored in a desiccator over P_2O_5 and used without further purification. Stock solutions were prepared by weighing pure compounds and demineralized distilled water.

Demineralized water was distilled two times in a quartz bidistillation apparatus (Destamat Bi 18E, Heraeus). The final product with specific conductivity $< 6 \times$ 10⁻⁷ S cm⁻¹ was distilled into a flask permitting storage under an atmosphere of nitrogen.

2. 2. Conductivity Measurement

The conductivities of solutions were determined with the help of a three-electrode measuring cell, described elsewhere.² The cell was calibrated with dilute potassium chloride solutions⁵ and immersed in the high precision thermostat described previously⁶ The temperature dependence of the cell constant was taken into account.⁵

The oil bath can be set to each temperature of a temperature program with a reproducibility within 0.005 K. The temperature in the precision thermostat bath was additionally checked with calibrated Pt100 resistance thermometer (MPMI 1004/300 Merz) in connection with a HP 3458 A. The resistance measurements of solutions in the cell were performed using a precision LCR Meter Agilent 4284 A.

At the beginning of every measuring cycle the cell was filled with a weighed amount (~660 g) of water. After the measurement of the solvent conductivity at all temperatures of the program a weighed amount of a stock solution was added using a gas-tight syringe. After every addition the temperature program was run and all measured data (frequency dependent resistance, temperature) were stored by the computer and partially shown on a display to track the measuring process.⁶ The measuring procedure, including corrections and the extrapolation of the sample conductivity to infinite frequency, is described in the literature.^{5,6}

Table 1. Densities, viscosities and dielectric constants of pure water and limiting ionic conductivities of sodium and potassium ions in water.^a

<i>T/</i> K	d_s^{b}	$10^3 \cdot \eta^c$	$oldsymbol{arepsilon}^d$	$\lambda^{\infty} (Na^+)^e$	$\lambda^{\infty} (K^{+})^{e}$
278.15	0.99997	1.5192	85.897	30.30	46.72
283.15	0.99970	1.3069	83.945	34.88	53.03
288.15	0.99910	1.1382	82.039	39.72	59.61
293.15	0.99821	1.002	80.176	44.81	66.44
298.15	0.99704	0.8903	78.358	50.15	73.50
303.15	0.99565	0.7975	76.581	55.72	80.76
308.15	0.99404	0.7195	74.846	61.53	88.20
313.15	0.99222	0.6530	73.157	67.55	95.79

^a Units: *T*, K; *d*_s, kg · dm⁻³; η , *Pa* · *s*; λ^{∞} , S · cm² · mol⁻¹ ^b Ref.⁷; ^c Ref.⁸; ^d Ref.⁹; ^e Ref.¹⁰

From the weights and the corresponding solution densities d the molar concentrations c were determined. A linear change of d with increasing salt content for diluted solutions was assumed, $d = d_s + b\tilde{m}$, where d_s is the density of water, given in Table 1, and \tilde{m} is the molonity of

Table 2. Experimental molar conductivities of the investigated drugs in water^a.

278.15 288.15 298.15 298.15 298.15 303.15 308.15 308.15 313.15 10 ⁵ m -					Т				
IP* \bar{n} Na.l. h = 0.067 0.77992 49.253 56.908 65.027 73.586 82.537 91.902 101.590 111.597 1.22321 48.805 56.522 64.163 72.605 81.432 90.671 100.328 110.143 2.929 48.312 55.832 63.793 72.175 80.958 90.134 99.691 109.468 3.93567 47.768 55.192 63.064 71.357 80.030 89.067 98.491 108.215 4.65674 47.764 54.690 62.492 70.697 79.279 88.258 97.556 107.161 5.50766 47.144 54.690 87.739 64.942 78.996 87.930 99.197 100.6770 70.1312 47.002 54.208 62.042 70.189 73.104 87.615 99.424 78.393 63.949 72.918 88.255 97.566 107.161 79.535 64.949 73.935 64.948 70.7927 88.256 79.753 56.9494		278,15	283.15	288.15	293.15	298.15	303.15	308.15	313.15
Naskab b = 0.067 Visite in the second	$10^3 \cdot \tilde{m}$				Λ				
0.77992 49,253 56,908 65,027 73,586 82,537 91,902 10,1590 111,599 1.76798 48,587 56,152 64,163 72,605 81,432 90,671 100,902 110,819 2.72924 48,812 55,814 63,432 71,761 80,490 89,603 99,661 1008,421 3.15281 48,025 55,504 63,432 71,761 80,490 89,603 90,666 1008,421 44,65674 47,557 54,962 62,785 71,030 79,664 88,676 98,033 107,711 5,5076 62,142 70,130 78,704 87,615 96,845 106,770 71,177 54,516 62,268 70,442 78,996 87,930 97,197 106,770 70,131 47,002 54,298 62,018 73,190 81,549 90,228 99,214 80,855 70,805 43,143 50,395 57,259 64,228 71,8101 81,442 89,437 98,35					NaSal, $b = 0.0$	67			
12.22.1 48.905 56.523 64.585 73.083 81.988 91.275 10.09.22 110.814 2.3922 48.312 55.8152 64.163 72.605 81.432 90.671 100.228 3.05367 47.768 55.192 63.064 71.357 80.030 89.087 98.491 108.212 4.65674 47.557 54.962 62.785 71.037 79.664 88.676 98.033 107.711 5.0706 47.744 54.699 62.492 70.697 79.279 88.258 97.556 106.375 C.101312 47.002 54.298 62.042 70.180 78.704 87.615 96.845 90.268 99.274 0.52218 43.613 50.395 57.535 64.042 71.180 81.251 89.912 98.855 0.78552 43.03 49.803 57.034 64.593 72.113 80.817 89.437 98.355 0.78552 43.03 49.275 64.622 71.181 79.342<	0.77992	49.253	56.908	65.027	73.586	82.537	91.902	101.590	111.597
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.22321	48.905	56.523	64.585	73.083	81.988	91.275	100.902	110.859
2.39229 48.312 55.832 63.793 72.175 80.958 90.134 99.601 100.468 3.05367 47.768 55.192 63.064 71.357 80.030 89.087 99.603 99.601 108.813 3.95367 47.768 55.192 63.064 71.357 80.030 89.087 98.491 100.82.12 4.65674 47.557 54.902 62.785 71.1030 79.664 88.676 98.033 107.711 5.50706 47.344 54.699 62.492 70.697 79.279 88.258 97.556 107.161 6.24124 47.177 54.501 62.268 70.442 78.996 87.930 97.197 106.770 7.1012 47.102 54.298 62.042 70.180 78.704 87.615 96.845 106.375 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.76798	48.587	56.152	64.163	72.605	81.432	90.671	100.228	110.114
3.15281 48.025 55.504 63.432 71.761 80.490 89.603 99.056 108.813 3.95367 47.768 55.192 63.064 71.357 80.030 89.087 98.491 108.212 4.65674 47.557 54.902 62.785 71.030 79.298 88.258 97.556 107.161 6.21124 47.177 54.501 62.2042 70.180 78.704 87.615 99.6845 106.575 70.1312 47.002 54.298 57.599 65.208 73.190 81.549 90.268 99.274 0.25218 43.345 50.145 57.535 64.948 72.513 80.817 89.0437 98.355 0.78955 43.103 49.863 57.034 64.502 71.891 80.100 88.672 97.523 1.8111 42.271 49.414 56.562 63.731 71.552 79.745 88.259 97.100 2.78946 42.086 48.644 55.714 63.108 70.805 78.924 87.412 96.513 3.45041 48.165 5	2.39229	48.312	55.832	63.793	72.175	80.958	90.134	99.691	109.468
3.95367 47.768 55.192 63.064 71.357 80.030 89.087 98.491 108.212 4.5674 47.344 54.690 62.492 70.607 79.279 88.258 97.556 107.161 5.4704 47.177 54.298 62.042 70.180 78.704 87.615 96.845 106.375 NaNap. b = 0.079 NaNap. b = 0.079 0.26893 43.613 50.395 57.599 65.208 73.190 81.549 90.268 99.274 0.52218 43.345 50.145 57.353 64.948 72.914 81.549 90.268 99.732 1.38111 42.721 49.44 56.252 64.022 71.891 80.10 88.672 97.523 1.7865 42.209 49.181 56.262 63.731 71.152 79.745 88.259 97.100 2.2814 42.209 49.820 55.965 63.396 71.181 79.342 87.809 96.572	3.15281	48.025	55.504	63.432	71.761	80.490	89.603	99.056	108.813
4.65674 47.557 54.962 62.785 71.030 79.664 88.676 98.033 107.711 6.24124 47.177 54.501 62.268 70.442 78.996 87.930 97.197 106.770 7.01312 47.002 54.298 62.042 70.180 78.704 87.615 96.845 106.370 0.26893 43.613 50.145 57.539 65.208 73.190 81.549 90.268 99.274 0.78955 43.103 49.863 57.034 64.593 72.513 80.817 89.437 98.355 0.78955 43.103 49.863 57.034 64.593 72.513 80.464 89.005 97.932 1.38111 42.279 49.181 56.252 64.022 71.181 79.342 87.809 96.572 2.78946 42.086 48.664 55.741 63.108 70.862 78.982 87.412 96.153 2.78946 42.086 48.667 57.070 78.102 86.433 <td>3.95367</td> <td>47.768</td> <td>55.192</td> <td>63.064</td> <td>71.357</td> <td>80.030</td> <td>89.087</td> <td>98.491</td> <td>108.212</td>	3.95367	47.768	55.192	63.064	71.357	80.030	89.087	98.491	108.212
$\begin{split} 5.50706 & 47.344 & 54.699 & 62.492 & 70.697 & 79.279 & 88.258 & 97.556 & 107.161 \\ \hline $2.4124 & 47.177 & 54.501 & 62.268 & 70.442 & 78.996 & 87.930 & 97.197 & 106.770 \\ \hline $7.01312 & 47.002 & 54.298 & 62.042 & 70.180 & 78.704 & 87.615 & 96.845 & 106.375 \\ \hline $8.759 & 43.613 & 50.395 & 57.599 & 65.208 & 73.190 & 81.549 & 90.268 & 99.274 \\ 0.52218 & 43.345 & 50.145 & 57.333 & 64.948 & 72.914 & 81.251 & 89.912 & 98.855 \\ 1.0766 & 42.900 & 49.730 & 56.776 & 64.311 & 72.513 & 80.817 & 89.437 & 98.355 \\ 1.0766 & 42.900 & 49.730 & 56.776 & 64.311 & 72.513 & 80.817 & 89.437 & 98.355 \\ 1.0766 & 42.200 & 49.730 & 55.755 & 64.022 & 71.891 & 80.120 & 88.672 & 97.523 \\ 1.28111 & 42.721 & 49.414 & 56.525 & 64.022 & 71.891 & 80.120 & 88.672 & 97.523 \\ 1.28148 & 42.279 & 48.920 & 55.965 & 63.396 & 71.181 & 79.342 & 87.809 & 96.572 \\ 1.28148 & 42.279 & 48.920 & 55.965 & 63.396 & 71.181 & 79.342 & 87.809 & 96.572 \\ 1.28148 & 42.279 & 48.920 & 55.946 & 62.429 & 70.092 & 78.102 & 86.433 & 95.042 \\ 1.278946 & 42.086 & 44.604 & 55.103 & 62.429 & 70.092 & 78.102 & 86.433 & 95.042 \\ 1.2790 & 40.164 & 46.542 & 53.344 & 60.480 & 67.931 & 75.766 & 83.905 & 92.323 \\ 1.54946 & 39.962 & 46.349 & 53.078 & 60.189 & 67.582 & 73.523 & 84.469 & 91.84 \\ 1.12796 & 40.164 & 46.542 & 53.344 & 60.480 & 67.931 & 75.766 & 83.905 & 92.323 \\ 1.54946 & 39.962 & 46.349 & 53.078 & 60.189 & 67.582 & 73.523 & 83.466 & 91.984 \\ 1.2796 & 40.164 & 46.542 & 53.344 & 60.480 & 67.931 & 75.766 & 83.905 & 92.323 \\ 1.54946 & 39.964 & 46.001 & 52.602 & 59.672 & 67.033 & 74.770 & 82.800 & 91.273 \\ 2.3690 & 39.483 & 45.746 & 52.479 & 59.924 & 67.357 & 73.503 & 83.138 & 91.650 \\ 2.3690 & 39.483 & 45.746 & 52.474 & 59.478 & 60.789 & 74.457 & 82.485 & 90.846 \\ 1.9242 & 39.303 & 45.539 & 52.170 & 59.157 & 66.472 & 74.107 & 82.063 & 90.530 \\ 1.9242 & 39.303 & 45.539 & 52.170 & 59.157 & 66.472 & 74.107 & 82.806 & 90.530 \\ 1.9242 & 39.303 & 45.539 & 52.170 & 59.157 & 66.472 & 74.107 & 82.806 & 90.530 \\ 1.9242 & 39.303 & 55.714 & 65.022 & 67.357 & 77.505 & 88.437 & 19.738 \\ 1.9$	4.65674	47.557	54.962	62.785	71.030	79.664	88.676	98.033	107.711
	5.50706	47.344	54.699	62.492	70.697	79.279	88.258	97.556	107.161
7.01312 47.002 54.298 62.042 70.180 78.704 87.615 96.845 106.375 Nanap, b = 0.079 0.26893 43.613 50.395 57.599 65.208 73.190 81.549 90.268 99.274 0.52218 43.345 50.145 57.333 64.948 72.914 81.251 89.912 98.355 1.0766 42.900 49.730 56.776 64.311 72.201 80.464 89.050 97.323 1.76852 42.509 49.181 55.256 63.736 71.181 79.342 88.259 97.100 2.28148 42.279 48.694 55.714 63.108 70.806 78.579 86.964 95.672 3.45331 41.891 48.664 55.474 62.791 70.504 78.579 86.944 95.642 3.45331 41.628 48.165 55.103 62.429 70.092 78.102 86.439 92.864 64.140 53.648	6.24124	47.177	54.501	62.268	70.442	78.996	87.930	97.197	106.770
NaNap. $b = 0.079$ 0.2689343.61350.39557.59965.20873.19081.54990.26899.2740.2689343.34550.14557.33364.94872.91481.25189.91298.8550.7895543.10349.86357.03464.99372.51380.81789.43798.3551.765642.90049.73056.77664.31172.20180.46489.05097.9321.8811142.72149.41456.25264.02271.89180.12088.67297.3232.7814642.26949.18156.26263.73171.55279.74588.25997.1002.2814842.27948.92055.71463.10870.86578.98287.41296.1533.4533141.89148.46655.44762.79170.09278.10286.94395.042 0.2170 40.65147.10554.00861.21268.76176.65784.87793.3780.7661940.40946.84353.68460.88268.38676.25884.43992.8441.279640.16446.54253.34460.88267.35775.07383.13891.6501.5444639.96246.34953.07860.17074.45782.46990.3301.5444639.96445.53952.17059.92467.35775.07383.13891.6501.5442639.30345.53952.17059.15766.47274.10782.063	7.01312	47.002	54.298	62.042	70.180	78.704	87.615	96.845	106.375
0.26893 43.613 50.395 57.599 65.208 73.190 81.549 90.268 99.274 0.52218 43.345 50.145 57.353 64.948 72.914 81.251 89.912 98.855 1.0766 42.900 49.730 56.776 64.311 72.201 80.464 89.050 97.932 1.76852 42.209 49.181 56.252 64.022 71.891 80.120 88.672 97.523 1.76852 42.209 49.181 56.262 63.731 71.552 79.745 88.259 97.100 2.28148 42.277 48.920 55.965 63.396 71.181 79.342 87.809 96.572 2.78946 42.086 48.694 55.714 63.108 70.865 78.982 87.412 96.153 3.45331 41.891 48.466 55.447 62.791 70.504 78.579 86.964 95.672 4.39937 41.628 48.165 55.103 62.429 70.092 78.102 86.433 95.042 NaDic, b = 0.122 0.42170 40.651 47.105 54.008 61.212 68.761 76.657 84.877 93.378 0.76619 40.409 46.843 53.684 60.882 68.386 76.258 84.439 92.864 1.12796 40.164 46.542 53.344 60.480 67.931 75.766 83.905 92.323 1.54946 39.962 46.549 53.078 60.189 67.582 75.352 83.466 91.984 2.3900 39.483 45.746 52.454 59.437 66.770 74.457 82.800 91.273 2.8900 39.483 45.746 52.454 59.437 66.770 74.457 82.458 90.846 3.9403 94.64 46.001 52.602 59.672 67.053 74.770 82.800 91.273 2.8900 39.483 45.746 52.454 59.437 66.770 74.457 82.458 90.846 3.5492 39.01 46.530 51.909 58.839 66.114 73.718 81.631 89.997 V V V V V V V V					NaNap, $b = 0.0$)79			
0.52218 43.345 50.45 57.353 64.948 72.914 81.251 89.912 98.855 0.78955 43.103 49.863 57.034 64.593 72.513 80.817 89.437 98.355 1.7666 42.900 49.730 56.776 64.311 72.201 80.464 89.050 97.932 1.38111 42.721 49.414 56.252 64.022 71.891 80.120 88.672 97.523 2.78946 42.269 48.920 55.965 63.396 71.181 79.342 87.809 96.572 2.78946 42.086 48.694 55.714 63.108 70.865 78.982 87.412 96.153 3.45331 41.891 48.466 55.447 62.791 70.504 78.579 86.964 95.675 4.39937 41.628 48.165 55.103 62.429 70.092 78.102 86.433 95.042 95.076 12.103 10.104 11.036 12.12 68.761 76.657 84.877 93.378 0.76619 40.409 46.843 53.684 60.882 66.386 76.258 84.439 92.864 1.12796 40.164 46.542 53.344 60.480 67.931 75.766 84.877 93.378 0.76619 40.409 46.843 53.684 60.480 67.931 75.766 84.877 92.3378 0.76619 40.409 46.843 53.684 60.189 67.582 75.352 83.466 91.984 1.92452 39.801 46.117 52.875 59.924 67.357 75.073 83.138 91.650 2.4694 39.962 46.349 53.078 60.189 67.582 75.352 83.466 91.984 4.3967 39.100 45.300 51.909 58.839 66.114 73.718 83.138 91.650 0.35492 39.303 45.539 52.170 59.157 66.472 74.107 82.683 90.543 2.8900 39.483 45.746 52.454 59.437 66.770 74.457 82.458 90.846 1.1398 56.247 64.413 72.944 83.2060 91.519 101.140 111.036 121.048 1.1398 56.247 64.413 72.944 83.2069 91.519 101.140 111.036 121.0489 1.1398 56.247 64.413 72.944 83.206 91.519 101.140 111.036 121.0489 1.1398 56.247 64.87 73.294 82.260 91.519 101.140 111.036 121.0489 1.1398 56.547 64.87 73.294 82.260 91.519 101.140 111.036 121.0489 1.1398 56.547 64.87 73.294 82.260 91.519 101.140 111.036 121.0489 1.1398 56.547 64.87 73.294 82.206 91.519 101.140 111.036 121.0489 1.1398 56.547 64.87 73.294 82.206 91.519 101.140 111.036 121.0481 1.1398 56.547 64.87 73.294 82.206 91.519 101.140 111.036 121.0481 1.1398 56.547 64.87 73.294 82.206 91.519 101.140 111.0422 120.607 1.5130 56.013 64.176 72.706 88.752 92.020 108.945 118.833 1.6467 55.531 63.064 71.421 80.114 89.117 98.459 108.094 117.938 1.2400 55.877 63.984 72.428 81.242 90.488 99.947 109.743 119.763 1.2540 63.044 11.745 47.801 54.207 60.932 67.909	0.26893	43.613	50.395	57.599	65.208	73.190	81.549	90.268	99.274
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.52218	43.345	50.145	57.353	64.948	72.914	81.251	89.912	98.855
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.78955	43.103	49.863	57.034	64.593	72.513	80.817	89.437	98.355
1.38111 42.721 49.141 56.255 64.022 71.891 80.120 88.672 97.523 1.76852 42.509 49.181 56.262 63.731 71.552 79.745 88.259 97.100 2.78946 42.086 48.694 55.714 63.108 70.865 78.882 87.412 96.573 3.4531 41.891 48.466 55.417 62.719 70.504 78.579 86.944 95.675 4.39937 41.628 48.165 55.103 62.429 70.092 78.102 86.433 95.042 Value	1.0766	42.900	49.730	56.776	64.311	72.201	80.464	89.050	97.932
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.38111	42.721	49.414	56.525	64.022	71.891	80.120	88.672	97.523
2.28148 42.279 48.920 55.965 63.396 71.181 79.342 87.809 96.572 2.78946 42.086 48.694 55.714 63.108 70.865 78.982 87.412 96.153 3.4531 41.628 48.165 55.103 62.429 70.092 78.102 86.433 95.042 Nabic, b = 0.122 0.42170 40.651 47.105 54.008 61.212 68.761 76.657 84.877 93.378 0.42170 40.654 45.3344 60.482 68.386 76.258 84.439 92.864 1.12796 40.164 46.542 53.344 60.488 67.357 75.073 83.138 91.650 2.860 39.962 46.349 52.602 59.672 67.053 74.770 82.800 91.273 2.860 39.33 45.539 52.170 59.157 66.472 74.107 82.063 90.530 94.137	1.76852	42.509	49.181	56.262	63.731	71.552	79.745	88.259	97.100
2.78946 42.086 48.694 55.714 63.108 70.865 78.982 87.412 96.153 3.45331 41.891 48.466 55.447 62.791 70.092 78.102 86.964 95.675 4.39937 41.628 48.165 55.103 62.429 70.092 78.102 86.433 95.042 0.42170 40.651 47.105 54.008 61.212 68.761 76.657 84.877 93.378 0.76619 40.164 46.542 53.344 60.480 67.931 75.766 83.905 92.323 1.54946 39.962 46.349 53.078 60.189 67.582 75.352 83.466 91.984 1.92452 39.801 46.117 52.875 59.924 67.357 74.70 82.800 91.273 2.8900 39.483 45.746 52.454 59.437 66.710 74.457 82.458 90.846 3.5492 39.303 45.539 51.100 56.477 64.413	2.28148	42.279	48.920	55.965	63.396	71.181	79.342	87.809	96.572
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.78946	42.086	48.694	55.714	63.108	70.865	78.982	87.412	96.153
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.45331	41.891	48.466	55.447	62.791	70.504	78.579	86.964	95.675
NaDic, $b = 0.122$ 0.42170 40.651 47.105 54.008 61.212 68.761 76.657 84.877 93.378 0.76619 40.409 46.843 53.684 60.882 68.386 76.258 84.439 92.864 1.12796 40.164 46.542 53.344 60.480 67.931 75.766 83.905 92.323 1.54946 39.962 46.349 53.078 60.189 67.582 75.352 83.466 91.984 1.92452 39.801 46.117 52.875 59.924 67.357 75.073 83.138 91.650 2.3694 39.646 46.001 52.602 59.672 67.053 74.770 82.488 90.846 3.5492 39.303 45.539 52.170 59.157 66.472 74.107 82.663 90.530 4.397 54.74 64.687 73.294 82.708 92.011 101.605 111.521 121.689 0.75913 56.487 64.867	4.39937	41.628	48.165	55.103	62.429	70.092	78.102	86.433	95.042
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					NaDic, $b = 0.1$	22			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.42170	40.651	47,105	54,008	61.212	68,761	76,657	84,877	93,378
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.76619	40.409	46.843	53.684	60.882	68.386	76.258	84.439	92.864
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.12796	40.164	46.542	53,344	60.480	67.931	75.766	83.905	92.323
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.54946	39.962	46.349	53.078	60.189	67.582	75.352	83.466	91.984
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.92452	39.801	46.117	52.875	59.924	67.357	75.073	83.138	91.650
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3694	39.646	46.001	52.602	59.672	67.053	74.770	82.800	91.273
35492 39.303 45.539 52.170 59.157 66.472 74.107 82.063 90.530 4.3967 39.100 45.300 51.909 58.839 66.114 73.718 81.631 89.997 KDic, b = 0.128 0.38303 56.714 65.022 73.736 82.708 92.011 101.605 111.521 121.689 0.75913 56.487 64.487 73.294 82.260 91.519 101.140 111.036 121.048 1.1398 56.247 64.413 72.942 81.874 91.137 100.641 110.422 120.607 1.5130 56.013 64.176 72.706 81.533 90.749 100.246 110.067 120.152 1.9805 55.877 63.984 72.428 81.242 90.488 99.947 109.743 119.763 2.4831 55.658 63.714 72.194 81.048 90.149 99.621 109.274 119.302 3.0674 55.533 63.536	2.8900	39.483	45.746	52.454	59.437	66.770	74.457	82.458	90.846
A.3967 39.100 45.300 51.103 51.103 51.113 61.112 71.013 51.035 50.103 $A.3967$ 39.100 45.300 51.909 58.839 66.114 73.718 81.631 89.997 KDic, $b = 0.128$ 0.38303 56.714 65.022 73.736 82.708 92.011 101.605 111.521 121.689 0.75913 56.487 64.687 73.294 82.260 91.519 101.140 111.036 121.048 1.1398 56.247 64.413 72.942 81.874 91.137 100.641 110.422 120.697 1.1305 55.877 63.984 72.428 81.242 90.488 99.947 109.743 119.763 2.4831 55.658 63.714 72.194 81.048 90.149 99.621 109.274 119.302 3.0674 55.533 63.536 72.010 80.756 89.827 99.260 108.945 118.833 3.7672 55.241 63.278 71.678 80.402 89.423 98.831 108.485 118.333 3.6674 42.442 48.544 55.024 61.816 68.803 76.325 83.961 0.73682 36.744 42.442 48.544 55.024 61.816 68.803 76.325 83.961 0.73682 36.744 42.442 48.544 55.024 <td>3 5492</td> <td>39 303</td> <td>45 539</td> <td>52.131</td> <td>59 157</td> <td>66 472</td> <td>74 107</td> <td>82.063</td> <td>90.530</td>	3 5492	39 303	45 539	52.131	59 157	66 472	74 107	82.063	90.530
KDic, $b = 0.128$ KDic, $b = 0.128$ Colspan="6">KDic, $b = 0.128$ 0.3830356.71465.02273.73682.70892.011101.605111.521121.6890.7591356.48764.68773.29482.26091.519101.140111.036121.0481.139856.24764.41372.94281.87491.137100.641110.422120.6071.513056.01364.17672.70681.53390.749100.246110.067120.1521.980555.87763.98472.42881.24290.48899.947109.743119.7632.483155.65863.71472.19481.04890.14999.621109.274119.3023.067455.53363.53672.01080.75689.82799.260108.945118.8333.767255.24163.27871.67880.40289.42398.831108.485118.3534.467255.10163.06471.42180.11489.11798.459108.094117.9385.240054.89662.81871.13679.79688.75298.033107.614117.410.7368236.74442.44248.54455.02461.81668.80376.32583.9010.7368236.744 <td>4.3967</td> <td>39.100</td> <td>45.300</td> <td>51.909</td> <td>58,839</td> <td>66.114</td> <td>73.718</td> <td>81.631</td> <td>89.997</td>	4.3967	39.100	45.300	51.909	58,839	66.114	73.718	81.631	89.997
Normalize 0.38303 56.714 65.022 73.736 82.708 92.011 101.605 111.521 121.689 0.75913 56.487 64.687 73.294 82.260 91.519 101.140 111.036 121.048 1.1398 56.247 64.413 72.942 81.874 91.137 100.641 110.422 120.607 1.5130 56.013 64.176 72.706 81.533 90.749 100.246 110.067 120.152 1.9805 55.877 63.984 72.428 81.242 90.488 99.947 109.274 119.763 2.4831 55.658 63.714 72.194 81.048 90.149 99.621 109.274 119.302 2.4831 55.533 63.536 72.010 80.756 89.827 99.260 108.945 118.833 3.0674 55.5241 63.278 71.678 80.402 89.423 98.831 108.485 118.353 4.4672 55.101 63.064 71.421 80.114 89.117 98.459 108.094 117.938 5.2400 54.896 62.818 71.136 79.796 88.752 98.033 107.614 117.401 Nalbu, b = 0.0430.73682 36.744 42.442 48.544 55.024 61.816 68.803 76.325 83.961 0.92933 36.581 42.271 48.373 54.825 61.605 68.604 $76.$		57.100	10.000	51.909	KDic . $h = 0.12$	28	10.110	01.001	07.777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.38303	56 714	65.022	73 736	82 708	92.011	101 605	111 521	121 689
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75913	56 487	64 687	73 294	82.260	91 519	101.005	111.036	121.009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1398	56.247	64.413	72.942	81.874	91.137	100.641	110.422	120.607
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5130	56.013	64.176	72.706	81,533	90.749	100.246	110.067	120,152
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9805	55.877	63.984	72.428	81.242	90.488	99.947	109.743	119.763
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4831	55.658	63.714	72.194	81.048	90.149	99.621	109.274	119.302
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0674	55.533	63.536	72.010	80.756	89.827	99.260	108.945	118.833
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7672	55.241	63.278	71.678	80.402	89.423	98.831	108.485	118.353
5.2400 54.896 62.818 71.136 79.796 88.752 98.033 107.614 117.401 NaIbu, b = 0.043 0.73682 36.744 42.442 48.544 55.024 61.816 68.803 76.325 83.961 0.92933 36.581 42.271 48.373 54.825 61.605 68.604 76.092 83.753 1.1335 36.438 42.129 48.226 54.664 61.483 68.474 75.881 83.508 1.3552 36.310 41.986 48.064 54.486 61.252 68.256 75.650 83.301 1.5799 36.202 41.872 47.931 54.348 61.104 68.091 75.460 83.102 1.8264 36.094 41.745 47.801 54.207 60.932 67.909 75.251 82.871 2.0501 35.998 41.647 47.694 54.085 60.797 67.762 75.089 82.690 2.3416 35.894 41.537 47.578 53.948 60.639 67.590 74.881 82.472 2.6734 35.766 41.391 47.409 53.772 60.452 67.374 74.655 82.207 3.0726 35.649 41.261 47.254 53.593 60.256 67.170 74.406 81.900	4.4672	55.101	63.064	71.421	80.114	89.117	98.459	108.094	117.938
Nalbu, $b = 0.043$ 0.73682 36.744 42.442 48.544 55.024 61.816 68.803 76.325 83.961 0.92933 36.581 42.271 48.373 54.825 61.605 68.604 76.092 83.753 1.1335 36.438 42.129 48.226 54.664 61.483 68.474 75.881 83.508 1.3552 36.310 41.986 48.064 54.486 61.252 68.256 75.650 83.301 1.5799 36.202 41.872 47.931 54.348 61.104 68.091 75.460 83.102 1.8264 36.094 41.745 47.801 54.207 60.932 67.909 75.251 82.871 2.0501 35.998 41.647 47.694 54.085 60.797 67.762 75.089 82.690 2.3416 35.894 41.537 47.578 53.948 60.639 67.590 74.881 82.472 2.6734 35.766 41.391 47.409 53.772 60.452 67.374 74.655 82.207 3.0726 35.649 41.261 47.254 53.593 60.256 67.170 74.406 81.900	5.2400	54.896	62.818	71.136	79.796	88.752	98.033	107.614	117.401
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					NaIbu, $b = 0.0$	43			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.73682	36 744	42.442	48 544	55 024	61.816	68 803	76 325	83 961
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.92933	36 581	42.271	48 373	54 825	61 605	68 604	76.092	83 753
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1335	36.438	42.129	48.226	54,664	61.483	68.474	75.881	83 508
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3552	36.310	41.986	48.064	54.486	61.252	68.256	75.650	83.301
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5799	36.202	41.872	47.931	54.348	61.104	68.091	75.460	83.102
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8264	36.094	41.745	47.801	54.207	60.932	67.909	75.251	82.871
2.3416 35.894 41.537 47.578 53.948 60.639 67.590 74.881 82.472 2.6734 35.766 41.391 47.409 53.772 60.452 67.374 74.655 82.207 3.0726 35.649 41.261 47.254 53.593 60.256 67.170 74.406 81.900	2.0501	35.998	41.647	47.694	54.085	60.797	67.762	75.089	82.690
2.6734 35.766 41.391 47.409 53.772 60.452 67.374 74.655 82.207 3.0726 35.649 41.261 47.254 53.593 60.256 67.170 74.406 81.900	2.3416	35.894	41.537	47.578	53.948	60.639	67.590	74.881	82.472
3.0726 35.649 41.261 47.254 53.593 60.256 67.170 74.406 81.900	2.6734	35.766	41.391	47.409	53.772	60.452	67.374	74.655	82.207
	3.0726	35.649	41.261	47.254	53.593	60.256	67.170	74.406	81.900

^a Units: \widetilde{m} , mol · kg⁻¹; T, K; Λ , $S \cdot \text{cm}^2 \cdot \text{mol}^{-1}$; b, kg² · dm⁻³ · mol⁻¹

the electrolyte (moles of electrolyte per kilogram of solution). The densities of the solutions were determined by the method of Kratky et al.¹¹ using a Paar densimeter (DMA 60, DMA 601 HT) at 298.15 K combined with a precision thermostat. As usual the density gradient *b* is considered to be independent of temperature, see Table 2.

The measured conductivity data of all investigated salts are given in Table 2 as a function of the temperature independent molonities. They can be converted to the temperature-dependent molarities by using the relationship $c = \tilde{m}d$.

Taking into account the sources of error (calibration, measurements, impurities) the molar conductivities are accurate to within 0.1%.

3. Data Analysis

The analysis of the conductivity data in the framework of the low concentration chemical model (lcCM) given in Ref.⁴ and the literature cited there, uses the set of equations

$$\frac{\Lambda}{\alpha} = \Lambda^{\infty} - S\sqrt{\alpha c} + E\alpha c \ln(\alpha c) + J_1 \alpha c - J_2 (\alpha c)^{\frac{3}{2}}$$
(1)

$$K_{\rm A} = \frac{1-\alpha}{c\alpha^2 y_{\pm}^{\prime 2}}; \quad y'_{\pm} = exp\left(-\frac{\kappa q}{1+\kappa R}\right); \tag{2a-b}$$

$$\kappa^2 = 16\pi N_A qac; \qquad q = \frac{e_o^2}{8\pi\varepsilon\varepsilon_o kT} \tag{3}$$

where Λ and Λ^{∞} are the molar conductivities at molarity cand in the infinite dilution, respectively, $(1-\alpha)$ is the fraction of oppositely charged ions acting as ion pairs, and K_A is the equilibrium constant of the lcCM with upper association limit R; $\mathbf{y'}_{\pm}$ is the corresponding activity coefficient of the free ions, $(\mathbf{y'}_{\pm})^2 = \mathbf{y'}_{+} \mathbf{y'}_{-}$, κ is the Debye parameter, e_0 is the proton charge, ε is the relative permittivity of the solvent, ε_o is the permittivity of vacuum and T the absolute temperature. The other symbols have their usual meaning. W^* is a step function for the potential of mean force between cation and anion due to non-Coulombic interactions.

The coefficients of Eq. (1) are given in Ref.⁴ The limiting slope S and the parameter E are completely calculable when the solvent data are available (Table 1). The coefficients J_1 and J_2 are also functions of the distance parameter R, representing the distance to which oppositely charged ions can approach as freely moving particles in solution.

Analysis of the conductivity data of associated electrolytes are carried out by setting the coefficients *S*, *E* and J_1 of Eq. (1) to their calculated values⁴ and then usually using three-parameter fits to obtain the limiting values of

molar conductivity Λ^{∞} , the association K_A and the coefficient J_2 by non-linear least squares iterations. A three-parameter evaluation is reduced to a two-parameter procedure for nonassociating electrolytes,² where usually coefficient J_2 is also fixed. The input data for the calculation of the coefficients are the known solvent properties (Table 1) and the distance parameter R. The lower limit a of the association integral is the distance of closest approach of cation and anion (contact distance), $a = a_1 + a_2$. It was calculated from the ionic radii of the cations; ${}^{4}a_{\perp} = 0.098$ nm for Na⁺ and 0.133 nm for K⁺. Organic anions such as carboxylates, sulfonates, etc., bear their negative charge in an oxygen atom on the surface of the ionic molecule. The "radius" of such ions may be taken to be the effective van der Waals radius of the carboxylate or sulfonate group.⁴ We used the value a = 0.162 nm which was estimated for formic acid⁴ assuming that the radicals in the anions of the investigated drugs do not change the interionic distance between the cation and the basic oxygen atom in their structure.

From extended investigations of electrolyte solutions in amphiprotic hydroxylic solvents (water, alcohols) it is known that the upper limit of association is given by an expression of the type R = a + ns, where *s* is the length of an oriented solvent molecule, n is an integer, n = 0, 1, 2,... Here, *s* is the length of an OH-group, d_{OH} , and $s = d_{OH}$ = 0.28 nm. In this study we fixed the distance parameter *R* at R = 0.820 nm for sodium and 0.855 nm for potassium salts, allowing thus three types of ion pairs in the solutions: contact ion pairs, solvent-shared and solvent-separated ion pairs.

4. Results and Discussion

Figure 2 shows a comparison of the experimental data for molar conductivities, Λ , of the NaNap aqueous

Figure 2. Molar conductivities, Λ , of aqueous NaNap solutions from 278.15 to 318.15 K (steps of 5 K). (Δ) experiment, full line: lcCM calculations.

Bešter-Rogač: Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: ...

solutions given in Table 2 and the results of the lcCM calculations executed using Eqs. (1-3). All other investigated systems show similar dependence.

In Figure 3 the conductivity data for sodium salts (salicylate, naproxen, ibuprofen, diclofenac) and potassium diclofenac at 298.15 K are presented. For NaIbu solutions the experiment was performed in the same concentration range as for other salts but for unknown reason the experimental data can only be satisfactorily fitted over a narrow range of concentration.

Table 3 gives a comparison of the calculated lcCM data for all investigated salts. The limiting conductivities are dependent on the structure of the anions, as can be expected. The values of the association constants are very low and all the investigated salts could be regarded as completely dissociated in water solutions ("strongelectrolytes"). The values of K_A for NaCl aqueous solutions obtained from precise conductance measurements by using the lcCM, are in the range $0.6 < K_A < 2.6$ in the temperature range between 278.15 and 303.15 K.¹² Whereas the temperature coefficient dK_A/dT is usually positive for the alkali salt water solutions, no reliable evidence for the temperature dependence of the association process of aqueous solutions of the discussed drugs was found except at NaSal and NaIbu where slightly higher ion association at lower temperatures can be assumed.

Figure 3. Molar conductivities of KDic ($\mathbf{\nabla}$), NaSal ($\mathbf{\diamondsuit}$), NaNap (\triangle) , NaDic (\bigtriangledown) and NaIbu (\bullet) in water at 25 °C.

Combining the limiting conductivities Λ^{∞} of Table 3 and the known limiting values of cations $\lambda^{\infty}(M^+)$, $M^+ =$ Na^+ , K^+ (Table 1)

$$\lambda^{\infty}(T, \mathbf{A}^{-}) = \Lambda^{\infty}(T, \mathbf{M}\mathbf{A}) - \lambda^{\infty}(T, \mathbf{M}^{+})$$
(4)

yields the limiting anion conductivities $\lambda^{\infty}(A^{-})$ and their temperature dependence; see Table 4.

Table 3	.: Limiting molar con	ductivities A° an	d association constant	ts K _A of investiga	tted salts in water. ^a					
T	~V	K_A	Λ^{∞}	K_A	~V	K_A	~∨	K_A	~v	K_A
	K	Dic	Ĩ	Dic	Ž	aSal	Ĩ	aNap	Na	Ibu
278.15	57.66 ± 0.03	0.1 ± 0.2	41.51 ± 0.01	$0.1 \pm$	44.31 ± 0.01	1.948 ± 0.17	50.44 ± 0.02	1.720 ± 0.09	37.83 ± 0.02	2.02 ± 0.26
283.15	66.09 ± 0.02	0.1 ± 0.1	48.12 ± 0.02	0.3 ± 0.2	51.27 ± 0.02	1.806 ± 0.26	58.30 ± 0.02	1.738 ± 0.08	43.70 ± 0.01	0.94 ± 0.16
288.15	74.89 ± 0.02	0.1 ± 0.1	55.16 ± 0.02	0.4 ± 0.2	58.61 ± 0.02	1.447 ± 0.18	66.63 ± 0.02	1.726 ± 0.08	49.97 ± 0.01	0.1 ± 0.12
293.15	84.07 ± 0.03	0.1 ± 0.2	62.55 ± 0.02	0.4 ± 0.1	66.38 ± 0.02	1.266 ± 0.20	75.42 ± 0.02	1.757 ± 0.08	56.65 ± 0.03	0.1 ± 0.28
298.15	93.60 ± 0.03	0.3 ± 0.1	70.26 ± 0.02	0.1 ± 0.2	74.52 ± 0.03	1.135 ± 0.21	84.61 ± 0.02	1.779 ± 0.08	63.67 ± 0.05	0.1 ± 0.53
303.15	103.40 ± 0.05	0.1 ± 0.2	78.35 ± 0.02	0.1 ± 0.2	83.05 ± 0.03	1.062 ± 0.23	94.22 ± 0.02	1.796 ± 0.08	70.87 ± 0.14	0.1 ± 1.25
308.15	113.52 ± 0.06	0.1 ± 0.2	86.77 ± 0.03	0.1 ± 0.1	91.93 ± 0.03	1.003 ± 0.20	104.19 ± 0.02	1.795 ± 0.07	78.63 ± 0.09	0.1 ± 0.68
313.15	123.88 ± 0.06	0.1 ± 0.2	95.33 ± 0.04	0.1 ± 0.2	100.99 ± 0.03	1.604 ± 0.17	114.32 ± 0.03	2.205 ± 0.08	86.42 ± 0.05	0.1 ± 0.35
^a Units: <i>T</i> ,	K; Λ° , $S \cdot \mathrm{cm}^2 \cdot \mathrm{mol}^-$	1 ; K_A , dm ³ · mol ⁻								

Bešter-Rogač: Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: ...

Т	λ~ (Dic⁻)	λ [∞] (Sal⁻)	λ [∞] (Nap ⁻)	λ̄ [∞] (Dic⁻)	λ [∞] (Ibu⁻)
	NaDic	KDic				
278.15	11.19	10.93	20.14	14.01	11.06	7.53
283.15	13.20	13.06	23.42	16.39	13.13	8.82
288.15	15.40	15.28	26.91	18.89	15.34	10.25
293.15	17.69	17.63	30.61	21.56	17.66	11.84
298.15	20.09	20.10	34.46	24.37	20.09	13.52
303.15	22.61	22.64	38.50	27.33	22.63	15.15
308.15	25.23	25.32	42.66	30.40	25.28	17.10
313.15	27.78	28.08	46.77	33.45	27.93	18.87

Table 4. Limiting conductance of anions of investigated drugs in water as a function of temperature^a

^a Units: *T*, K; λ^{∞} , $S \cdot cm^2 \cdot mol^{-1}$

From the Walden rule⁴

$$\lambda^{\infty}(T)\eta(T) = \frac{Fe|z|}{6\pi a_{i}^{(\eta)}}$$
(5)

the solvent dependent ionic radii $a_i^{(\eta)}$ were estimated (*F* is the Faraday constant and *z* the ionic charge). In water $a_i^{(\eta)}$ are usually called hydrodynamic radii, r_h . Values for the hydrodynamic radii of the ions of investigated salts are collected in Table 5. It is well known that comparison of the values of the hydrodynamic radii and the crystal radii of cations show large difference for Na⁺ ions, whereas the ion size parameter of K⁺ are close together.

Table 5. Hydrodynamic radii, r_h , of the investigated salts in water from Walden rule as a function of temperature

			r_h			
Т	Na ⁺	K ⁺	Sal⁻	Nap⁻	Dic⁻	Ibu [−]
278.15	0.178	0.115	0.268	0.385	0.487	0.716
283.15	0.180	0.118	0.267	0.382	0.477	0.710
288.15	0.181	0.121	0.267	0.381	0.469	0.702
293.15	0.182	0.123	0.267	0.379	0.463	0.690
298.15	0.183	0.125	0.267	0.377	0.458	0.680
303.15	0.184	0.127	0.267	0.376	0.454	0.678
308.15	0.185	0.129	0.267	0.374	0.450	0.666
313.15	0.186	0.131	0.268	0.375	0.449	0.665

^a Units: T, K; r_h, nm

Sodium ion is relatively small and has, therefore, an exceptionally high charge to radius ratio (charge density) and tends to orient the water molecules in its vicinity. Contrarily, its hydrated radius is much larger than similar ions and the large solvation shell around the ion also causes its low mobility and low limiting conductivities λ^{∞} in solution.

The potassium ion has low charge densities and consequently ions are surrounded by water molecules which are more mobile. For the sodium ion the hydration number, h, obtained from transport process measurements, is reported in the literature as h (Na⁺, 298.15 K) = 5. The obtained hydrodynamic radii for the anions are ranked in Sal⁻ < Nap⁻ < Dic⁻ < Ibu⁻ what is not expected from their molar van der Waals volumes, V_{vdw} , calculated from the optimized geometries using the Winmostar program¹³ and summarized in Table 6.

Table 6. Van der Waals volumes, V_{vdw} , van der Waals radii, r_{vdw} , of the anions and the ratio between van der Waals radii and the hydrodynamic radii at 298.15 K.^a

	V_{vdw}	<i>r</i> _{vdw}	r_{vdw}/r_h
Sal ⁻	67.9	0.300	1.123
Nap⁻	125.1	0.367	0.973
Dic ⁻	137.4	0.379	0.828
Ibu [_]	119.2	0.362	0.532

^a Units: V_{vdw} , cm³ · mol⁻¹; r_{vdw} , nm

The van der Waals radii, r_{vdw} , were calculated assuming spherical shapes of anions and Walden rule treats the ionic migration as a movement of a rigid spherical ion through viscous continuum also. The structures of the investigated ions (Figure 1) hardly express the spherical symmetry. Therefore values listed in Tables 5 and 6 can be discussed only as the rough estimation of real dimensions of the drug's anions in water. Nevertheless, values of r_h and r_{vdw} for Sal⁻ and Nap⁻ are close together. It appears that no explicit hydration of these anions can be assumed.

Larger differences between r_h and r_{vdw} for Dic⁻ and Ibu⁻ may lead to the assumption that here the hydration is more pronounced. Despite the fact that chlorine and nitrogen atoms reduce the hydrophobicity of the radical in Dic⁻ anion the hydration can be predicted hardly even here. For Ibu⁻ possessing higly hydrophobic alkyl chain bound to the aromatic ring this is even less likely. Rather it can be assumed that the anions are more extended and the assumption of the spherical symmetry is far from more realistic dimensions obtained by Walden rule.

From Table 5 it is evident that r_h of Sal⁻ is almost temperature insensitive whereas at all other anions r_h is decreasing perceivably with increasing temperature. This again may lead to the conclusion that hydration – which is more pronounced at lower temperatures – may take place.

Finally, the hydrodynamic radii of Sal⁻ and Nap⁻ ions have been found to be smaller than 0.4 nm, a common pore size of membranes so that the direct passage of the drug through the pores of the membranes is possible. The opposite is true for the Dic⁻ and Ibu⁻ and these drugs probably penetrate by partition mechanism.

For Dic⁻ anion in acetontrile the value of $a_i^{(\eta)} = 0.521$ nm at 298.15 K has been found recently³ showing completely different interactions of this anion with the solvent. It is known that solvents forming three-dimensional networks (water, alcohols) surround hydrophobic organic ions in clathrate-like structures⁴ and therefore here the radii of complex organic anions are significantly different from that in organic solvents. Moreover, for the complex hydrophobic organic anions in aqueous solutions coiled configuration can be assumed.

The temperature-dependence of limiting conductivity yields Eyring's enthalpy of activation of charge transport¹⁴

$$\ln\lambda^{\infty} + \frac{2}{3}\ln d_s = -\frac{\Delta H^*}{RT} + \mathbf{B}, \qquad (6)$$

where B is the integration constant.

Values $\Delta H^* = 16.50$, 14.72, 17.40, 17.94, 19.02 and 19.03 kJ/mol for Na⁺, K⁺, Sal⁻, Nap⁻, Dic⁻and Ibu⁻, respectively, were obtained (Figure 4).

It has been shown that the ionic migration in a nonstructures solvent is very much a solvent property and that the difference in the mobilities of ions is simply the result of different ion sizes.^{14,15} The observed order of the molar ionic enthalpies of activation, ΔH^* , for the cations Na⁺ > K⁺ could be explained by the energy needed for the desolvation and rearrangement of water molecules in the vicinity of the ion. Thus values of ΔH^* may depend on the expressed hydration.

Differences in the Eyring's enthalpy of activation of charge transport of the investigated anions are ranked as Sal⁻< Nap⁻< Dic⁻ \approx Ibu⁻. They could not be ascribed to the differences in the ion sizes only ($r_h(\text{Dic}^-) < r_h(\text{Ibu}^-)$) but also to the specific interaction anions with water.

In water additional strong – hydrophobic – interactions are presented, resulting not only in the size parameters. Therefore it could be assumed that for the jump of the, for example, Ibu⁻ anion to a prepared vacancy in the solvent – or to produce such a vacancy – higher energy is required than for the Sal⁻ anion (and Nap⁻) or cations investigated in this work.

This could be explained by the repulsion of water molecules by the hydrophobic site of the anions and this part is larger at Dic⁻ and Ibu⁻ than at Sal⁻ and Nap⁻. The hydroxyl and ether group in the structure of Sal⁻ and Nap⁻, respectively, reduce the hydrophobicity of these anions obviously. Assuming substantial hydration of Dic⁻ the relatively high value of ΔH^* can be explained by the desolvation and rearrangement of water around the moving ion, whereas at Ibu⁻ the hydrophobicity is crucial.

Figure 4. Plot of $ln\lambda^{\infty} + 2/3 \ lnd_s$ as a function of 1/T for K⁺(\diamondsuit), Na⁺(\bigcirc), Sal⁻(\blacklozenge), Nap⁻(\bigtriangleup), Dic⁻(\bigtriangledown) and Ibu⁻(\blacklozenge) in water at 298.15 K. From the slope the activation energy of the ionic movement, ΔH^* , is obtained.

4. Conclusion

Nonsteroidal anti-inflammatory drugs sodium salicylate, naproxen sodium salt, diclofenac sodium salt, diclofenac potassium salt and ibuprofen sodium salt are completely dissociated in aqueous solutions. Their anions are weakly hydrated due to its hydrophobicity, whereas the hydration of cations depends on their charge densities.

From the Eyring's enthalpy of activation it could be assumed that the repulsion of water molecules by the hydrophobic site of the anion at Ibu⁻ is more pronounced than at Sal⁻ and Nap⁻, where hydroxyl group and/or ether group reduce the hydrophobicity of the anions. At Dic⁻ the hydration could also play an important role.

Despite the fact, that the mechanism of action of NSAIDs is not completely understood,¹ it could be expected that the observed differences should have an influence on their potency, duration of action and the way in which they are eliminated from the body. However, more investigations are needed to enlighten the correlation of their transport behaviour with their pharmacological properties.

5. Acknowledgement

Financial support by the Agency for Research and Development of Slovenia (ARRS) under grant P1-0201 is gratefully acknowledged. The author owes Professor Barthel a great debt of gratitude for all support and his continued interest in her work.

Bešter-Rogač: Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: ...

- 1. J. A. Mitchell, T. D. Warner, *Nat. Rev. Drug Disc.* 2006, 5, 75–86.
- J. Barthel, R. Wachter, H.-J. Gores, Temperature dependence of electrolyte conductance in non-aqueous solutions, in: B. E. Conway, J. O'M. Bockris (Eds.), Modern Aspects of Electrochemistry, New York: Plenum Press, **1979**, p.1–78.
- R. Mandal, J. Gangopadhyay, S. C. Lahiri, Z. Phys. Chem. 2004, 218, 551–561.
- J. Barthel, H. Krienke, W. Kunz, Physical Chemistry of Electrolyte Solutions-Modern Aspects, Steinkopf/Darmstadt, Springer/New York, 1998.
- 5. J. Barthel, F. Feuerlein, R. Neueder, R. Wachter, *J. Solution Chem.* **1980**, *9*, 209–219.
- M. Bešter-Rogač, D. Habe, Acta Chim. Slov. 2006, 53, 391–395.

- 7. E. F. G. Herington, Pure Appl. Chem. 1976, 45, 1-9.
- L. Korson, W. Drost-Hansen, F. J. Millero, J. Phys. Chem. 1969, 73, 34–39.
- B. B. Owen, R. C. Miller, C. E. Milner, H. L. Cogan, J. Phys. Chem. 1961, 65, 2065–2070.
- H. S. Harned, B. B. Owen, The physical chemistry of electrolyte solutions, 3rd edn., Reinhold, New York, p. 233, 1958.
- 11. O. Kratky, H. Leopold, H. Stabinger, Z. Angew. Phys. 1969, 27, 273–277.
- M. Bešter-Rogač, R. Neueder, J. Barthel, J. Solution Chem. 1999, 28, 1071–1086.
- 13. N. Senda, Winmostar, version 3.75 http://winmostar.com
- 14. S. B. Brummer, G. J. Hills, J. Chem. Soc. Faraday Trans. 1961, 57, 1816–1837.
- 15. F. Barreira, G. J. Hills, J. Chem. Soc. Faraday Trans. 1968, 64, 1359–1375.

Povzetek

Izmerili smo električne prevodnosti vodnih raztopin salicilat, ibuprofen, diklofenak in naproksen natrijeve soli ter diklofenak kalijeve soli v temperaturnem območju med 278.15 K in 313.15 K v koncentracijskem obsegu $3 \times 10^{-4} < c (mol/dm^{-3}) < 0.007$. Na osnovi kemijskega modela smo določili vrednosti molskih prevodnosti pri neskončnem razredčenju, Λ^{∞} , ter konstante asociacije ionov, K_A , v posameznem sistemu. S pomočjo znanih vrednosti limitnih prevodnosti natrijevega oz. kalijevega iona smo ocenili limitne prevodnosti ter hidrodinamične radije vseh preiskovanih anionov. Ugotovili smo, da je delež ionskih parov v raztopini zanemarljiv in preiskovanim elektrolitom v vodnih raztopinah lahko pripišemo popolno disociacijo v celotnem obravnavanem temperaturnem območju. Opazno razliko v mobilnosti anionov lahko pripišemo različni hidrataciji ter možnim hidrofobnim interakcijam.